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Centrifugal pendulum vibration absorber (CPVA) systems are used to decrease steady
state torsional vibration levels and extend operating ranges for rotating and reciprocating
machinery. They are typically sized and designed for a given harmonic using the assumption
that a set of identical absorbers move in exact unison. Herein an investigation is carried
out to determine the consequences, in terms of system performance, of a recently uncovered
dynamic instability of this unison motion. The system considered consists of a rigid rotor
and N CPVA’s riding on epicycloidal paths tuned to order n, the same as the dominant
order of the applied torque. Using two co-ordinate transformations and the method of
averaging, the system dynamics can be modelled by a set of 2N first order, internally
resonant, autonomous differential equations. A bifurcation analysis of these equations
shows that the post-bifurcation dynamics, in which a single absorber moves out of step with
its partners, is dynamically stable and leads to the worst-case (that is, the smallest)
operating torque range. Furthermore, it is found that the rotor acceleration undergoes a
mild saturation, leading to slightly improved performance beyond the instability. Analytical
estimates of the torque range and the rotor acceleration are derived based on a truncated
version of the equations, and more accurate estimates are obtained from a numerical
solution of the non-truncated equations. The results are compared with numerical
simulations.
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1. INTRODUCTION

In the dynamics of rotating and reciprocating machinery, forces are often generated that
cause undesirable oscillatory torques at frequencies that are multiples of the nominal
rotation rate. These torques result in torsional oscillations which introduce roughness and
fatigue difficulties. The CPVA is a passive device used for reducing such torsional
oscillations in a rotating system. It consists essentially of a mass whose center of gravity
(C.G.) is restricted to move along a prescribed path relative to the base rotating system.
This mass is driven by the dynamics of the rotor, and its motion provides a restoring torque
which, when the path is properly designed, reduces the level of torsional oscillations of
the rotor.

CPVA’s were invented for use in internal combustion engines as early as 1929 [1] and
have been successfully employed to suppress torsional vibrations in light aircraft engines
and helicopter rotors [2]. Previous analytical works [3–5] have concentrated on analyzing
the non-linear dynamics of CPVA’s which use the easily manufactured circular paths for
the absorber kinematics. Improved performance of CPVA’s can be achieved by intentional
mistuning of circular paths at small amplitudes and/or by accounting for the system’s
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nonlinear dynamic behavior over the entire amplitude range. For example, as shown in
references [6–10], the use of non-circular paths can be quite effective in reducing the level
of torsional oscillations over a large torque range. It is interesting to note that the
aforementioned designs are based on the assumption that the absorber system for
addressing a given harmonic consists of only a single dynamic mass.

However, in practice, due to spatial and balancing considerations, the implementation
of CPVA’s requires that the total absorber inertia be divided into several absorber masses
that are stationed about and/or along the axis of rotation. If all absorbers move in exact
unison, the usual design conclusions are valid. However, Chao et al. [11] have shown that
for the epicycloidal absorber path, the unison motion of N identical absorbers may become
unstable at a moderate level of the disturbing torque level, in which case the performance
of the absorbers in the post-bifurcation stage becomes of interest. In addition, it was
observed in simulations that the post-critical response involved N−1 absorbers moving
in relative unison with the remaining absorber undergoing a larger amplitude motion.

The present study aims to uncover the source of this response and to determine the
effects it has on system performance. To this end, the dynamic response of a rigid rotor
fitted with N identical absorbers using epicycloidal paths and subjected to a harmonic
torque is considered. The primary goal of this effort is to determine the nature and
stabilities of the post-bifurcation, non-unison solutions in order to estimate the effects that
the bifurcation has on the rotor acceleration and the operating torque range. It should be
noted that the present results are only the first step in such a study, as some important
issues must be considered in subsequent work in order for the results to be of any practical
use. These matters are taken up in the conclusions.

The system under consideration has several identical subsystems that lead to inherent
symmetries in the equations of motion. Therefore, concepts from group theory are adopted
in order to analyze the post-bifurcation solutions. (The relevant symmetry group for the
system is, in terms of standard notation, SN .) A linear transformation among absorber
displacements is first performed to separate the dynamics into two invariant subspaces
which are induced by the embedding symmetry of the system. These subspaces represent
the unison response and its complement. A transformation to polar co-ordinates is then
performed in order to conduct averaging. With the averaged equations in hand, different
levels of expansion in the absorber amplitudes are investigated. The full, non-truncated
results are very accurate, but require numerical solution of integrals and transcendental
equations. By considering the equations truncated at the leading non-linear order, an
analytical approximation of the worst-case operating torque range can be found. This
estimate shows that the leading order terms of the angular acceleration of the rotor
saturate as the torque amplitude is increased, and, remarkably, that they are independent
of the particular post-bifurcation solution branch encountered. It is also found that the
bifurcation dramatically reduces the feasible operating torque range. This occurs since one
absorber will move with a significantly larger amplitude than the others, and this absorber
will reach the physical limits of its motion at a much lower torque amplitude when
compared with the unison response. (The symmetry group for this response is S1 ×SN−1.)
The above predictions are confirmed by the non-truncated average equations and by direct
simulations.

This paper is organized as follows. In section 2, the mathematical model is presented,
the embedding symmetry is identified and the scaling required for asymptotic analysis is
formulated. In section 3, a linear transformation is adopted among absorber displacements
to separate the dynamics into the two invariant subspaces. By averaging and truncation,
two versions of the averaged equations are then obtained. In section 4, the S1 ×SN−1

solution branches are proved to be stable and to lead to the worst-case operating torque
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range. In section 5, the rotor acceleration and the feasible operating torque ranges are
estimated. In section 6, detailed simulations are conducted and compared with the various
approximations for specific numerical examples. In section 7, some conclusions and
directions for future work are offered.

2. MATHEMATICAL MODEL

2.1.   

A simplified model involving only the absorbers and a rigid rotating inertia with an
applied torque is considered. The system is shown schematically by the cross sectional view
of the rotor in Figure 1. This dynamical system consists of a rotor of moment of inertia,
Id , with respect to the center of rotation, denoted by O, and N absorbers moving freely
on prescribed paths relative to the rotor. Each individual absorber, denoted by a subscript
i for the ith absorber, is considered to be a point mass with mass mi . (For the common
bifilar arrangement of absorbers, one can account for the moments of inertia of the
absorbers about their respective C.G.’s by simply including them in Id , as they rotate at
the same rate as the rotor.) The path for each absorber is specified by the function
Ri =Ri(Si), where Ri is the distance from the C.G. of the absorber to point O and Si is
an arc-length variable along the path defined relative to the rotating frame of reference,
with its origin at the point where Ri reaches its maximum value, denoted by Ri0 =Ri(0).
Thus, the nominal moment of inertia with respect to O for each absorber is defined by
Ii =miR2

i0. The path is designed to be symmetric with respect to Si =0; i.e.,
Ri(Si)=Ri(−Si). An absorber system of total mass m0 is assumed to be composed of N
absorbers with equal individual masses (1/N)m0. The resistance of the absorber along its
path is modelled by an equivalent viscous damping coefficient ca = cai for each i. For this
study the absorber path is specified by R2(Si)=R2

i (Si)=R2
0 − n2S2

i with Ri0 =R0 for each
i. Note that this path is an epicycloidal path which tunes the oscillating frequency of each
absorber to be equal to that of the disturbing torque, even when the absorbers undergo
large motions. This is the tautochronic absorber of reference [7].

Let u denote the angular displacement of the rotor. The applied torque (including load
torques) is assumed to be a nominal constant, T0, plus a disturbing torque Tu(u) which
is periodic in u. The disturbing torque is here assumed to be harmonic of order n, i.e.,
Tu(u)=T
 u sin (nu). (These torques arise from a variety of sources, including attached
linkages, etc., and are generally periodic with several harmonics. Here only the harmonic
for which the absorber system is designed is considered.) The nominal steady state

Figure 1. Cross-sectional schematic diagram of the rotor and absorbers.
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rotational speed of the rotor, V, is the speed at which the constant torque T0 balances the
mean component of the torque which arises from rotational friction; thus,

V=T0/c0, (1)

where c0 is the damping between the rotor and ground.
With the assumptions made, the overall system kinetic energy can be formulated.

Assuming that gravitational effects are small compared to rotational effects and the
corresponding potential energy is negligible, the governing equations of motion are
determined by applying Lagrange’s method to the kinetic energy. Introducing a new
non-dimensionalized dependent variable y as

y0 u� /V (2)

and assuming that u is a smooth and invertible function of t, these equations can be
transformed into a set of periodically forced, non-autonomous equations with the
independent variable u replacing t. (This step transforms the non-linear term, T
 u sin (nu),
into a periodic forcing term.) To simplify the mathematical model even further,
non-dimensionalization is performed on the governing equations, yielding the following
dynamical system that describes the dynamics of the N absorbers and the rotor:

ys0i +[s'i + g(si)]y'+ n2siy=−m̂as'i , 1E iEN, (3a)

n

N
s
N

i=1 $−2n2sis'i y2 + (1− n2s2
i )yy'+ g(si)s'i yy'+ g(si)s0i y2 +

dg(si)
dsi

s'2i y2%+ yy'

=
n

N
s
N

i=1

m̂ag(si)s'i y− m̂0y+G0 +G
 u sin (nu), (3b)

where

( · )' denotes d( · )/du, si =Si/Ri0, I0 =m0R2
0, n= I0/Id ,

m̂a = ca/miV, m̂0 = c0/IdV, G0 =T0/IdV
2, G
 u =T
 u/IdV

2,

g(si)=z1− (n2 + n4)s2
i ,

dg(si)
dsi

=−(n2 + n4)si/z1− (n2 + n4)s2
i . (4)

Note that in terms of these dimensionless quantities, the steady rotation condition (1)
becomes

G0 = m̂0 (5)

since the nominal steady value of y is unity.
The values of the function gi (si) must be kept real during absorber motions, and this

leads to a restriction on the amplitudes of the absorber motions, given by

si(u)E smax =1/nzn2 +1, [u and [ i. (6)

This restriction keeps the absorber from passing the cusp points of the epicycloidal
path. Note that the restriction in inequality (6) imposes a finite operating range on
disturbing torque level, which is an important measure of the absorber system
performance.
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2.2.  

Identifying the symmetry of the system allows one to search for and characterize the
post-bifurcation solutions in an efficient way. Intuitively, due to the identical nature of each
absorber, it is expected that the system described by equations (3a) and (3b) will enjoy some
special properties. These properties can be mathematically characterized by transform-
ations among the state variables that yield new sets of system equations which are both
structurally and mathematically invariant from the original system equations. Such
transformations are symmetries of the system. To mathematically characterize the
symmetries of the system, conventional notation from group theory is employed. (See
reference [12] for details.) Let

ẋ= h(x, l) (7)

be a system of first order differential equations, where x is a generalized state vector, l

is bifurcation parameter, and h: Rk ×R:Rk, is smooth. Let g be an invertible k× k matrix
representing a transformation among the state variables. It is said that g is a symmetry
of system (7) if

h(gx, l)= gh(x, l) [x$Rk. (8)

It can be shown that system (7) is invariant subject to g if equation (8) is satisfied. If there
exists a group G such that the equation (8) is satisfied for each g$G, then G is called a
symmetry group of the system, or, equivalently, that the function h is called G-equivariant.
To identify the symmetry group of the present model, first consider equation (3b), which
describes the dynamics of the rotor. It is seen that the speed of the rotor, y(u), is invariant
subject to any permutation among the absorbers. Furthermore, from equation (3a), it can
be confirmed that each absorber is coupled with all other absorbers only through y.
Therefore, any permutation of absorbers should result in a system that is indistinguishable
from the original. One can easily transform equations (3a) into 2N first-order differential
equations and use the condition (8) to show that the symmetry group of the system is SN

(known as the ‘‘symmetric group’’ which is a group containing all permutations on N
symbols [13]).

Based on group theory [12], there exist invariant subspaces in the absorber system
due to the embedding symmetry SN . A partition of particular utility in the present
work is

V= {s$RN = s=[v, v, . . . , v]T} and W=RN −V, (9)

where V is the subspace spanned by the unison mode and W is its complement. For any
given initial conditions s(0)$V or s(0)$W, the system dynamics will stay in V or W,
respectively, for all time.

It should be pointed out that bifurcations in systems with this level of symmetry can
be extremely rich. In fact, due to the fact that many eigenvalues associated with W
become simultaneously unstable, the corresponding bifurcation problem is highly
degenerate and there may exist numerous branches of solutions emanating from a
single bifurcation point. It is not always possible to determine all these branches, let
alone their stability types. In the present case, measures of absorber performance are
used in conjunction with symmetric bifurcation theory in order to get a handle on the
most important branches, and in particular, the dynamically stable ones that limits
the steady state system behavior.
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2.3.  

An approximation for the equations of motion and their solution is now provided that
yields a form amenable to asymptotic analysis.

In most applications the ratio of the total nominal moment of inertia of all absorbers
about point O to that of the entire rotating system is generally much smaller than one.
This motivates the definition of the small parameter o0 n for asymptotic analysis. It is
further assumed that the non-dimensional damping and excitation parameters, m̂a , m̂0, G
 0

and G
 u , are also small such that they can be scaled as follows:

m̂a = om̃a , m̂0 = om̃0, G0 = oG	 0, and G
 u = oG	 u . (10)

The unperturbed system dynamics for this case are determined by considering
equation (3b) with o=0, that is, n=0, which yields y=1 (the constant value of y is fixed
at unity by the non-dimensionalization employed). Using this in equation (3a) with m̃a =0
yields a linear oscillator with frequency n for the absorber motion. Thus, the global steady
state solution of the unperturbed system is simply a constant rotor speed, y=1, and
harmonic motion of each absorber with frequency n. This limiting case can be imagined
as that with an enormous flywheel attached to the rotor, in which the absorbers move in
a harmonic manner but have no rotor, which happily spins at a constant rate. In such a
situation, the absorbers see a constant speed centrifugal field in which their undamped
response is purely harmonic for all amplitudes up to the cusp point; this is the main point
of using the tautochronic absorber path [7]. Note that in this limiting case the amplitudes
of the absorbers’ emotions are restricted, other than by the limit imposed by the cusps on
the path. Then, since the rotor speed will change smoothly as the absorber mass, the
applied torque, and the absorber damping are increased from zero, y will be smooth in
o and can be expanded as

y(u)=1+ oy1(u)+O(o2), (11)

where y1 captures the speed fluctuations induced by the net interaction of the applied
torque, damping effects, and the torques induced by the motions of the absorbers. Note
that condition (5) is assumed to maintain as o is increased from zero, thereby keeping the
mean rotational rate near y=1.

The non-dimensionalized angular acceleration of the rotor, u� (t)/V2, is given in terms of
the variable y(u) by yy'(u). Since the primary design goal of the absorber system is to
decrease the steady state rotor acceleration, an important measure of absorber
performance is given by the peak value (that is, the infinity norm) of yy'(u) during a steady
state response; this quantity is denoted herein by >yy'>ss . It will be convenient to have
simple expressions for this acceleration, and these can be derived as follows. Since o�1,
and y1 is bounded, y(u) oscillates about unity and is never zero. Therefore, equation (3a)
can be divided through by y in order to obtain an expression for s0i in terms of si , s'i and
y. Substitution of this expression into equation (3b) and utilization of equation (4) gives
an exact expression for yy'(u):

yy'(u)=$1+
n

N
s
N

i=1

n4s2
i%

−1

$−m̂0y+G0 +G
 u sin (nu)

+
n

N
s
N

i=1 02n2s'i siy2 −
dg(si)
dsi

s'2i y2 + n2 + sig(si)y2 +2m̂as'i g(si)y1%. (12)
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Utilizing the definition o0 n, the scalings in equation (10), the expansion in
equation (11), and the condition (5), a series approximation for yy' in terms of o can
be obtained as follows:

yy'(u)=−o61
N

s
N

j=1 0−2n2sjs'j − n2g(sj)sj +
dg(sj)
dsj

s'2j 1−G	 u sin (nu)7+O(o2). (13)

The above equation shows that the non-dimensionalized angular acceleration is of order
o, a result consistent with physical intuition from the limiting case as o:0.

3. APPLICATION OF AVERAGING

3.1.      

The method of averaging is used to determine the dynamic response for 0Q o�1. To
obtain equations in the correct form for the application of averaging, some modifications
of the equations of motion are carried out. This amounts to expressing the rotor dynamics
in terms of the absorber dynamics in an o-expansion, and then eliminating the rotor
dynamics from the absorber equations of motion, yielding a set of coupled oscillators
describing the absorber motions. First, based on the expansions in equations (11) and
(13), one can show that y'/y is the same as yy' to leading order in o. Then by dividing
equation (3a) through by y, a modified equation describing the absorber dynamics is
obtained, into which the o-series approximation of y'/y is substituted. Expanding the result
in terms of o yields a set of weakly coupled, weakly non-linear oscillators for the absorber
dynamics. These oscillators, in which the dynamics of the rotor has been eliminated to first
order, are

s0i + n2si = ofi(s1, . . . , sN , s'1 , . . . , s'N , u)+O(o2), 1E iEN, (14)

where

fi(s1, . . . , sN , s'1 , . . . , s'N , u)

=−m̃as'i +[s'i + g(si)]$1
N

s
N

j=1 0−2n2sjs'j − n2g(sj)sj +
dg(sj)
dsj

s'2j 1−G	 u sin (nu)%.
3.1.1. Remarks:

(1) These equations are weakly coupled. The weak coupling arises due to the fact that
the absorbers are not directly coupled in a physical sense, but only indirectly so
through the rotor, and each absorber has only a small effect on the rotor due to
its small relative inertia.

(2) The equations of motion are weakly non-linear, even though the amplitude of
motion of the absorbers is not assumed to be small. The weak non-linearity is due
to the epicycloidal path used for the absorbers, which renders a linear equation of
motion valid for all feasible absorber amplitudes when the rotor speed is constant.
Again, due to the smallness of the absorbers’ inertias, the rotor speed is nearly
constant and the presence of the absorbers, the applied torque and the absorber
damping are pushed out to first nonlinear order.

(3) The symmetry SN is evident in equation (14), as the absorbers appear in a completely
interchangeable manner.
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In reference [11], the method of averaging was employed to find a criterion that
determines the point at which the unison motion becomes unstable. Therein, the following
transformation to amplitude and phase variables was introduced:

si = ai cos (fi − nu) and s'i = nai sin (fi − nu), 1E iEN, (15)

where ai and fi are slowly varying due to the form of equation (14). A first order averaging
process was then carried out to capture the evolutions of ai and fi , 1E iEN. The resulting
averaged equations can be expressed in terms of the corresponding first order averaged
quantities ri and 8i , 1E iEN, respectively (see Appendix A). However, this approach fails
to characterize the post-bifurcation dynamics in a convenient form, since the averaged
equations are highly non-linear and coupled in terms of the amplitudes and phases.
Essentially, while it is possible to find the post-bifurcation solutions using numerical
methods, it is not possible to predict the behavior of the post-bifurcation dynamics in terms
of system parameters. To solve this problem, a linear co-ordinate transformation among
absorber displacements is used herein that splits the dynamics into two invariant
subspaces, representing the unison motion and its complement, respectively.† This
transformation is given by

j1 =
1
N

s
N

j=1

sj , ji =
1
N

(s1 − si) for 2E iEN. (16)

3.1.2. Remarks:
(1) This transformation enables one to separate the dynamics in the subspace of

the unison mode V with attendant co-ordinate j1, from the dynamics in the
complement space W with co-ordinates ji , 2E iEN. From the results in
reference [11], it is known that when the unison response (in which the N absorbers
undergo synchronous motion) bifurcates, (N−1) eigenvalues of this system
response, which correspond to the system dynamics in W, cross the imaginary
axis. Therefore, to determine the post-bifurcation behavior, the dynamics in W
must be analyzed.

(2) Note that for a response in which a group of p absorbers move in unison, with
s1 included in that group, there will be (p−1)ji ’s with zero amplitudes and
(N− p)ji ’s with non-zero amplitude (for 2E iEN). Furthermore, if the
remaining (N− p) absorbers move together, the non-zero ji ’s (2E iEN) will
be equal to one another.

(3) Each ji(2E iEN), is orthogonal to j1 but they are not orthogonal to one another.
A standard block diagonalization technique (see reference [15]) suggests that one
chooses a set of orthogonal co-ordinates to characterize the dynamics in W in order
to find the linearized solutions near the bifurcation point. In contrast, herein the
special transformation (16) is chosen for convenience in estimating the feasible
operating range of the applied torque.

(4) The inverse of the transformation exists and is given by

s1 = s
N

j=1

jj , si = s
N

j=1

jj −Nji , for 2E iEN. (17)

(5) For efficiency of presentation, the matrix T is defined such that s=Tj where
s=[s1, s2, . . . , sN ]T and j=[j1, j2, . . . , jN ]T.

† A similar transformation was used in [14] in order to put linearized equations in a useful form.
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The final form for averaging is obtained by applying transformation (17) to the
equations of the motion (14) and implementing a transformation to polar co-ordinates.
First, substituting transformation (17) into equations (14) yields the following transformed
equations of motion:

j01 + n2j1 = of
 1(j, j', u)+O(o2), j0i + n2ji = of
 i(j, j', u)+O(o2), 2E iEN, (18)

where

f
 1(j, j', u)=−m̃aj'1 + j'1Y(Tj, u)+
1
N $g0 s

N

j=1

jj1+ s
N

i=2

g0 s
N

j=1

jj −Nji1%Y(Tj, u),

f
 i(j, j', u)=−m̃aj'i + j'i Y(Tj, u)+
1
N $g0 s

N

j=1

jj1− g0 s
N

j=1

jj −Nji1%Y(Tj, u),

2E iEN,

Y(s, u)=
1
N

s
N

j=1

(−2n2sjs'j − n2g(sj)sj +(dg(sj)/dsj)s'2j )−G	 u sin (nu).

The polar transformation is then given by

ji = ri cos (ci − nu) and j'i = nri (ci − nu), 1E iEN. (19)

Note that this transformation is singular when ji is zero, and it is therefore not
appropriate for determining the stability of the unison mode. However, of interest here
are the system dynamics in the post-bifurcation stage. Substituting transformation (19)
into equations (18) results in a set of first order differential equations which describe the
dynamics of ri and ci , 1E iEN:

r'i =(o/n)F
 i(r1, . . . , rN , c1, . . . , cN , u) sin (ci − nu)+O(o2), (20a)

ric'i =(o/n)F
 i(r1, . . . , rN , c1, . . . , cN , u) cos (ci − nu)+O(o2), 1E iEN, (20b)

where the function F
 i is simply f
 i expressed in terms of co-ordinates ri and ci , as obtained
by incorporating transformation (19) into f
 i . It should be pointed out at this stage that
in terms of the co-ordinates ri ’s and ci ’s, the subspace of the unison mode V is spanned
by [r1, c1, 0, 0, . . . , 0, 0]T and the complement W is spanned by [0, 0, r2, c2, . . . , rN , cN ]T.
Equations (20a) and (20b) are in the desired form for averaging.

3.2.   

Considering only the first order terms in o in equations (20a) and (20b), averaging is
performed in u over one period of the excitation, 2p/n. The resulting averaged equations
are expressed in terms of the first order averaged variables r̄i and c� i , 1E iEN. Due to
the complicated nature of the system, this process results in many terms in the forms of
integrals, which render closed form solutions unachievable.

In order to obtain simplified, approximate estimates of the rotor acceleration and the
operating torque range, it is assumed that the oscillation amplitudes of the absorbers, that
is, the r̄i ’s, are small and of the same order, denoted O(r̄). Then the averaged equations
can be expanded in terms of the r̄i ’s. This yields a set of truncated, averaged equations
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in terms of r̄i and c� i , 1E iEN, as follows, where each is expanded to the desired order
(more on this below):

dr̄1

du

=

−m̃ar̄1

2
+

G	 u

2n
cos c�1 +O(r̄3), r̄1

dc�1

du

=−

G	 u

2n
sin c�1 −

nr̄1

2
+O(r̄3), (21a, b)

dr̄i

dû
=

−m̃ar̄i

2
+

n3

4
r̄2

1r̄i sin (2c�1 −2c� i)

+
n3r̄i

4
s

j$ 1,i

{2r̄ir̄j sin (c� i −c� j)− (N−1)r̄2
j sin [2(c� i −c� j)]}

+
n3r̄i

2
s

j,k$ 1,i and j$ k

r̄jr̄k sin (2c� i −c� j −c�k)

+
(n2 + n4)r̄i

16n 6NG	 ur̄i cos ci − s
N

j=1

2G	 ur̄j cos (2c� i −c� j)Nn2r̄1r̄i sin (c�1 −c� i)

− s
N

j=1

2n2r̄1r̄j sin (c�1 −2c� i +c� j)7+O(r̄5), (21c)

r̄i
dc� i

du

=−

n3

4
r̄ir̄

2
1 cos (2c�1 −2c� i)−

(N−1)
4

n3r̄3
i

+
n3r̄i

4
s

j$ 1,i

{2r̄ir̄j cos (c� i −c� j)− (N−1)r̄2
j cos [2(c� i −c� j)]}

+
n3r̄i

2
s

j,k$ 1,i and j$ k

r̄jr̄k cos (2c� i −c� j −c�k)

+
(n2 + n4)r̄i

16n 6−3NG	 ur̄i sin ci + s
N

j=1

[2G	 ur̄j sin (2c� i −c� j)

+4G	 ur̄j sin c� j ]−3Nn2r̄1r̄i cos (c� i −c�1)

+ s
N

j=1

[2n2r̄1r̄j cos (2c� i −c�1 −c� j)+4n2r̄1r̄j cos (c�1 −c� j)]7+O(r̄5), (21d)

where 2E iEN and u
 0 ou.

3.3.   

Note that equations (21c) and (21d) are expanded out to third order, while terms out
to fifth order are retained in the remaining equations. This is consistent for obtaining
steady state solutions, as the O(r̄3) terms in the dynamics of r̄1 and c�1 contribute at O(r̄5)
in the dynamics of r̄i and c� i , 2E iEN. Since only the first order non-linear terms in the
dynamics of r̄i and c� i , 2E iEN, are needed to find the desired approximate solutions,
the O(r̄3) terms in r̄1 and c�1 are not needed. This fact implies that only the linear dynamics
of the unison response are needed in order to determine the first order non-linear steady
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state solution of the non-unison component (this is most easily seen by making use of the
proper co-ordinates, as done here). In the above suggested method for finding the
approximate solutions, it is assumed that the O(r̄3) and O(o) terms in averaged equations
dominate the O(o2) terms resulting from the second order averaging (which is not
considered here). The validity of this assumption depends on the actual values of o and
r which depend on the level of the disturbing torque. It will be shown in the simulations
that the present expansion method provides satisfactory prediction for the system
dynamics well beyond the bifurcation.

To find a simple approximation for the steady-state solution for r̄1 and c�1, it is assumed
that m̃a is small compared to n (this is true in most applications), and that the O(r̄3) terms
in equations (21a) and (21b) are neglected. Setting equations (21a) and (21b) equal to zero
yields the following approximate steady state solutions for r̄1 and c�1, denoted by r� 1
and c
 1,

r� 1 =G	 u/n2 and c
 1 =−p/2. (22)

This is nothing more than the linear undamped response, but a reasonable approximation
of the unison mode at steady state, even up to amplitudes for which the bifurcation
occurs; this is verified by simulations. Substituting the above solutions into equations (21c)
and (21d), setting their derivatives equal to zero, and ignoring the O(r̄5) terms, a set
of stationary equations obtains which can be solved for the approximate steady state
solutions of r̄i and c� i , 2E iEN, denoted here as r� i and c
 i , respectively. These
equations are

0=
−m̃ar� i

2
+

G	 2
ur� i
2

sin (2c
 i)+
n3r� i
4

s
j$ 1,i

{2r� ir� j sin (c
 i −c
 j)

− (N−1)r� 2j sin [2(c
 i −c
 j)]}+
n3r� i
2

s
j,k$ 1,i and j$ k

r� jr� k sin (2c
 i −c
 j −c
 k), (23a)

0=
G	 2

ur� i
4n

cos (2c
 i)−
(N−1)n3

4
r� 3i

+
n3r� i
4

s
j$ 1,i

{2r� ir� j cos (c
 i −c
 j)− (N−1)r� 2j cos [2(c
 i −c
 j)]}

+
n3r� i
2

s
j,k$ 1,i and j$ k

r� jr� k cos (2c
 i −c
 j −c
 k), 2E iEN. (23b)

Note that up to this point, ( ·̄ )’s denote the first order averaged quantities of r’s and c’s
and ( ·� )’s denote the associated truncated, steady state quantities of ( ·̄ )’s when the
absorber damping is neglected in the unison mode. The post-bifurcation dynamics are
investigated using the truncated equations in equations (21) and (23), as well as their
non-truncated version in Appendix A. The first approach has the advantage of providing
explicit results in terms of the system parameters, whereas the second approach is more
accurate. (One should note that for simplicity the equations in Appendix A capture the
system dynamics in terms of the s co-ordinates, which are different from the j co-ordinates
used throughout this paper.)
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4. THE POST-BIFURCATION DYNAMICS

In this section a first order approximation of the post-bifurcation dynamics is examined
based on the truncated equations obtained in the previous section. Some general remarks,
notational definitions and a brief overview of this section are provided before the detailed
results are presented.

It is very difficult to determine all solution branches and their stabilities in a problem
with this level of symmetry. However, for the problem at hand, it is possible to estimate
certain important features of the response, including the angular acceleration of the rotor
and the feasible torque range. Note that the torque range is imposed by the restriction
stated in inequality (6), the constraint on the amplitude of the absorber motions. Therefore,
an estimate for the peak amplitude over all absorber motions at the steady state, denoted
by > s >ss, is needed.

In section 4.1, it is first shown that all possible post-bifurcation, steady state solutions
lie near the surface of an ellipsoid formed by the steady-state amplitudes of the r� i ’s,
2E iEN. Some of the solutions on this ellipsoid are those with the corresponding
isotropy subgroups, Sp ×SN− p , for 1Q pQN. For simplicity, such solutions are referred
to as ‘‘an Sp ×SN− p solution’’, or ‘‘an Sp ×SN− p branch’’. A Sp ×SN− p solution simply
refers to one with p absorbers moving in relative unison and the other (N− p) absorbers
also moving in relative unison, but with a different amplitude and/or phase than the first
p.

In section 4.2., based on the results obtained in section 4.1., it is shown that among all
the possible solution branches, the S1 ×SN−1 branch leads to the maximum >s>ss of all
possible absorber motions. In section 4.3., one of the S1 ×SN−1 branches is proven to be
dynamically stable, based on the truncated equations in the set (21). This information is
then used in section 5 to estimate the feasible torque range.

4.1.  - 

Based on equations (23), for each i there exist steady-state solutions with r� i =0 or r� i $ 0.
As time goes to infinity, some of the r� i ’s, 2E iEN, may converge to r� i =0 while the
others converge to non-zero steady state amplitudes, depending on initial conditions and
the stabilities of the various solution branches. For simplicity, the following sets of indices
are defined

Z06i = lim
u:a

r� i(u)=0, 2E iEN7, N06i = lim
u:a

r� i(u)$ 0, 2E iEN7, (24)

which contain those indices corresponding to zero and non-zero steady state amplitudes,
respectively. For those r� i with i in Z, the solution for the steady state phase c
 i is
arbitrary. For the remaining r� i , that is, those with i in N, it can be assumed that the
corresponding phases are identical; i.e., c
 i =c
 j , [i, j$N (see Appendix B for a
justification of this assumption.) Applying the results obtained to equations (23) yields an
ellipsoid prescribed by

N s
N

i=2

r� 2i − s
N

i=2

s
N

j=2

r� ir� j =0G	 4
u

n8 −
4m̃2

a

n6 1
1/2

(25)

such that the steady-state solutions of r� i , i$N lie on this ellipsoid (as a first order
approximation). The formulation of this ellipsoid is independent of number of the
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non-zero steady state r� i’s, i.e., of the size of N, but its dimension depends on the
size of N.

Note that the ellipsoid exists only for system and excitation parameters satisfying

G	 u ez2nm̃a , (26)

which is equivalent to the simplified bifurcation criterion for the unison motion obtained
in reference[11].

Note also that since this ellipsoid results from the truncated equations (23); when the
non-truncated equations are considered the ellipsoid will be distorted or even disappear
in the sense that only a finite number of points on the (distorted) ellipsoid will survive as
legitimate steady state solutions.†

Some information about the nature of the solutions on the ellipsoid can be garnered
from symmetric bifurcation theory. Consider a case in which p and N− p groups of
absorbers move in distinct, but relative unison motions. (Note that in this case (p−1) is
the size of Z, since the first absorber is not included in Z.) As for the other r� i , that is,
the N− p with i$N, their steady state solutions lie on the surface of the ellipsoid (25).
Based on the ‘‘Equivariant Branching Lemma’’ proposed by Cicogna [16] and
Vanderbauwhede [17], when certain conditions are satisfied,‡ the Sp ×SN− p solution
branches generically exist for all p, 1E pEN. Therefore, the existence of the solution
branches on the surface of the ellipsoid with identical amplitudes ri and phases ci for each
i$N is generically ensured for the non-truncated averaged equations. Attention is now
turned to the most important of these solution branches. (Note that travelling wave types
of solutions are also possible in the generic case, but these have not been observed for the
system under consideration. They may not exist, or may be dynamically unstable for this
system.)

4.2.          >s>ss

Instead of finding all possible solution branches, a search for the branch leading to the
maximum >s>ss is conducted in order to estimate the feasible torque range. This is
accomplished by substituting the polar form of the absorber responses given in equation
(19) into the absorber displacements in terms of the j-co-ordinates given in equations (17),
and assuming identical phases for each absorber during steady state operation (this is the
assumption justified in Appendix B). From this, one can express the steady state peak value
of the first absorber motion by

>s1>ss 0max {s1(u) = u0 E uE u0 +2p, u0:a}

2$0s
N

i=2

r� i1
2

−
2G	 u

n2 sin (c
 i)0s
N

i=2

r� i1+
G	 2

u

n4%
1/2

, (27)

which is a square root of a positive quadratic function of SN
i=2 r� i . (Note that it is implied

from equations (23) and Appendix B that sin (c
 i) is independent of r� i , 2E iEN.) Subject

† Working to first nonlinear order predicts the existence of this invariant ellipsoid, but it does not provide the
dynamics on it. This could presumably be obtained by using higher order averaging. However, for present
purposes this is not necessary.

‡ These two conditions are (also see reference [12]): (1) The symmetric group SN acts on W irreducibly.
(2) The critical eigenvalues cross the imaginary axis with non-zero speed as the parameter of interest is
varied. These conditions can be verified in the present case. However, one still needs to prove that the present
bifurcation problem is generic. It is not the authors’ intention to complete such a rigorous proof in this paper.
The ‘‘Equivariant Branching Lemma’’ is simply used as a road map to search for possible solution branches,
and their existence can be confirmed by numerically solving the non-truncated averaged equations given in
Appendix A.
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to the ellipsoid in equation (25), >s1>ss will reach its maximum value when SN
i=2 r� i reaches

its extremum. Since SN
i=2 r� i =0 is a principal axis for the ellipsoid, SN

i=2 r� i reaches its
extrema at the direction of the associated eigenvector where r� i = r� j , 2E i, jEN. Hence,
among all the possible post-bifurcation solutions, the one with identical r� i and c
 i ,
2E iEN, leads to the maximum >s1>ss . It can be easily shown that the maximum >si>ss

for all 2E iEN is equal to the maximum >s1>ss , since the results are preserved under
different choices of the first absorber due to identity of all absorbers. As a result, among
all the possible post-bifurcation solutions, the one with identical r� i and c
 i for 2E iEN
leads to the maximum >s>ss of all possible absorber motions on the steady state ellipsoid.
This solution corresponds to the isotropy subgroup S1 ×SN−1 wherein one absorber moves
out of step relative to all other absorbers, which remain in relative unison.

Based on the Equivariant Branching Lemma, at least one such solution branch is
expected to exist. The Newton–Raphson method was employed to numerically determine
from the non-truncated averaged equations (given in Appendix A) that such branches
indeed exist in the post-bifurcation stage over a wide range of parameter values.

4.3.    1 × N−1  

With the existence of the S1 ×SN−1 solution in hand, a stability analysis is carried out
based on the truncated equations (21).

Consider equations (21a) and (21b), in which r̄1 and c�1 capture the dynamics of the
unison mode. The steady state solutions of r̄1 and c�1 can be approximated by

r̄1 = r� 1 +O(r̄3) and tan c�1 = tan c
 1 +O(r̄3), (28)

where

r� 1 =G	 u/n(m̂2
a + n2)1/2, tan c
 1 =−n/m̃a , (29)

which, when truncated, is simply the linear, damped steady state unison solution. Note
that compared to the approximate solutions (22), here the effect of damping is required
since it is crucial to the stability analysis of the S1 ×SN−1 branch.

This approximate solution is independent of r̄i and c� i , 2E iEN, up to O(r̄3) (that is,
the unison dynamics are independent of the non-unison dynamics to second order). By
treating the O(r̄3) terms as non-vanishing perturbations in equations (21a) and (21b), it
can be shown (using Lyapunov techniques) that there exists a positive number U,
independent of r̄i(u), c� i(u), 2E iEN, such that [r̄1(u), c�1(u)]T is ultimately bounded in
an O(r̄3) neighborhood of [r� 1(u), c
 1(u)]T for ueU. Hence, the stability of the S1 ×SN−1

branch can be examined by incorporating the approximate solution from equation (28)
in equations (21c) and (21d), which govern the dynamics of r̄i , c� i , 2E iEN, and in which
the O(r̄3) terms in equations (28) only contribute to the terms of O(r̄5).

The subsystem consisting of equations (21c) and (21d), governing the dynamics of r̄i and
c� i , 2E iEN, is considered for the stability analysis. The Jacobian of this system is first
derived and evaluated on the S1 ×SN−1 branch. Due to the symmetry of the subsystem
and this solution, this Jacobian, denoted by J, has the form

A2×2 B2×2 · · · B2×2

B2×2 A2×2 · · · B2×2

J(2N−2)× (2N−2) =G
G

G

K

k

···
···

· · · B2×2
G
G

G

L

l

. (30)

B2×2 B2×2 B2×2 A2×2

It can be shown that all eigenvalues of J are eigenvalues of one of the 2×2 matrices,
[A+ (N−2)B] or [A−B]. This result is a consequence of the symmetry and does not
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depend on the actual values of A and B. The nature of the eigenvalues of [A−B] are first
determined by the well-known fact that both eigenvalues of a 2×2 matrix possess negative
real parts if and only if the trace is negative and the determinant is positive. By
incorporating equations (28) into the Jacobian J, the determinant and trace of [A−B] are
determined to be

Trace [A−B]=−m̃a , (31a)

Det [A−B]= (Nm̃a(n2 + n4)/256)r� r� 1[(12−5N)(n2 + n4)r� r� 1

+ (4N−12)(n2 + n4)r� r� 1 cos (2c
 −2c
 1)+16 cos (c
 −c
 1)]+O(r̄6), (31b)

where r� and c
 are used to denote the steady state amplitudes and phases of r̄i and c� i ,
2E iEN, respectively, on the S1 ×SN−1 branch. Since the trace is always negative, only
the sign of Det [A−B] needs to be determined. Letting r� :0+, it is found that the sign
of Det [A−B] is dominated by the sign of cos (c
 −c
 1) near the bifurcation point. Based
on equations (23), near the bifurcation point,

c
 2−3p/4 or p/4. (32)

The above two solutions for the phases provide two different S1 ×SN−1 solution branches.
With the approximate value of c1 given in equation (22), one has

cos (c
 −c
 1)261/z2,
−1/z2,

for c
 2 −3p/4,
for c
 2 p/4,

near the bifurcation point. The first branch, with c
 2 −3p/4, leads to Det [A−B]q 0
as r� :0+ while the other branch similarly leads to Det [A−B]Q 0.

As for the [A+(N−2)B] matrix, in Appendix C it is proved that the branch with
c
 2−3p/4 leads to Trace [A+(N−2)B]Q 0 and Det [A+(N−2)B]q 0 as r� :0+ near
the bifurcation point. Hence, the S1 ×SN−1 branch with c
 close to −3p/4 is stable.
Henceforth, this branch will be designated as ‘‘the stable S1 ×SN−1 branch’’.

5. ABSORBER PERFORMANCE

In this section, two important measures of absorber performance, the feasible operating
range of the applied torque and the angular acceleration of the rotor, are estimated.

5.1.      

As the amplitude of the applied torque is increased, the absorbers’ amplitudes likewise
increase, until a cusp limit (6) is reached for one or more absorbers. Therefore, the feasible
torque range can be determined if one combines the relationship between the torque
amplitude and >s>ss with the absorber amplitude limit. This process is described here for
both the truncated and non-truncated versions of the equations.

From the analytical results obtained in the previous section, it is known that there exists
a stable S1 ×SN−1 solution which yields the maximum >s>ss (based on the truncated
equations). This implies that for any initial conditions, the system will converge to a
solution branch that renders an >s>ss which is less than or equal to that resulting from the
stable S1 ×SN−1 branch. Therefore, this solution branch can be used to predict the
maximum >s>ss , which is used in turn to determine the feasible torque range.

By using the fact that the steady state amplitudes, ri , 2E iEN, are all equal on the
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stable S1 ×SN−1 solution branch, the ellipsoid prescribed in equation (25) can be used to
determine the steady state amplitudes, yielding

r� 0 r� i =(1/zN−1(G	 4
u/n8 −4m̃2

a/n6)1/4, 2E iEN. (33)

Similarly, by using equations (23), the equal steady state phase on this solution branch
are found to be

c
 0c
 i = 1
2[sin

−1 (2nm̃a/G	 2
u)]− p, 2E iEN. (34)

It has been shown that >s>ss can be derived from >s1>ss . To determine >s1>ss , the
expression for s1 in terms of ji , 1E iEN, given in equation (17), is utilized. Substituting
the angular transformation (19) into this expression, using the stable S1 ×SN−1 branch and
the approximate steady state unison solution for r1 and c1 given in equations (22), one
obtains >s>ss , as follows:

>s>ss 0 max
1E iEN

{si(u) = u0 E uE (u0 +2p), u0:a}

2 [G	 2
u/n4 −2/n2(N−1)G	 ur� sin c
 +(N−1)2r� 2]1/2, (35)

where r� and c
 are given by equations (33) and (34), respectively.
It is now possible to estimate the feasible operating range of the applied torque level

G
 u by recalling inequality (6) and using the approximate expression for >s>ss in equation
(35). This can be carried out to an analytical equation, which is not presented here since
it is not easily solved for an explicit expression for the maximum torque. Note that since
this estimate is based on the truncated equations in equation (23), it will deteriorate near
the singularity of the absorber path. In order to determine a more accurate estimate for
the torque range, one can numerically solve the non-truncated equations (A1a) and (A1b)
(as described in Appendix A) for a more accurate estimate of the S1 ×SN−1 solution.

5.2.     

An approximate expression for the angular acceleration is first formulated to leading
non-linear order, after which more accurate estimates are computed. Taking the
non-dimensionalized acceleration yy'(u) stated in the equation (13), considering only the
O(o) terms in yy'(u), expanding yy'(u) in terms of si , 1E iEN, and then using the
definition o0 n and the transformation (16), yields

yy'(u)= n$2n2

N
s
N

j=1

sjs'j + n2j1 +G	 u sin (nu)%+O(r3), (36)

where only the first and second order amplitude terms are considered. Utilizing the
truncated stationary equations (23), a non-trivial calculation (outlined in Appendix D)
yields the following lower order approximation for yy'(u),

yy'(u)26o[n3r� 21 sin (2c
 1 −2nu)]= (G
 2
u/nn) sin (2nu),

o[2m̃a cos (2c
 −2nu)]=2m̂a cos (2c
 −2nu),
before bifurcation,
after bifurcation,

(37)

where the approximate solution for r� 1 and c
 1 in equations (22) have been used and where

c
 = 1
2$sin−102nnm̂a

G
 2
u 1%− p.
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An interesting feature of this result is that the peak value of yy'(u); i.e., >yy'>ss , is
quadratic in terms of the applied torque level in the pre-bifurcation stage—this is due to
the fact that the absorber is tuned to eliminate the acceleration at linear order. An even
more interesting result is that in the post-bifurcation stage, >yy'>ss is independent of the
torque level; i.e., it saturates after bifurcation. Furthermore, the acceleration yy'(u)
vanishes as m̂a goes to zero. (Recall that the bifurcation torque level also goes to zero as
m̂a goes to zero.) Since the acceleration predicted by equations (37) saturates after
bifurcation, higher order terms in r will become dominant when the applied torque level
goes beyond the bifurcation level. In order to obtain a more accurate estimate, one can
use the acceleration approximated to the next order, which is given by

yy'(u)2 n$2n2

N
s
N

j=1

sjs'j + n2j1 +G	 u sin (nu)+ (n2 + n4) s
N

j=1

sjs'2j −
n2(n2 + n4)

2
s
N

j=1

s3
j%, (38)

where si , 1E iEN are approximated by equations (22), (33) and (34).
An even more accurate estimate can be obtained by numerically solving the

non-truncated equations (A1a) and (A1b) given in Appendix A for the stable S1 ×SN−1

branch and substituting the resulting si , 1E iEN, into equation (13). These results are
found to match simulations very closely over the entire feasible torque range.

6. NUMERICAL AND SIMULATION RESULTS

In this section, existence and stability results for steady state solutions are presented,
along with simulation results, which are used to confirm the analytical results and to
examine the accuracy of the various levels of approximations used in this study. In addition
to the approximate results obtained in the previous sections, included here are numerical
solutions of the non-truncated averaged equations (A1a) and (A1b) given in Appendix A.
The system parameters used throughout this section are: n=0·1662 and n=2; these were
taken from the 2·5 l, in-line, four cylinder, four-stroke engine considered by Denman [7].
Recall that the authors’ approximations are based on a small n assumption; the value
considered here is a relatively large ratio for absorber systems, as typical values are often
in the range 0·05–0·1. The absorber damping m̂a is taken to be independent of the number
of the absorbers, N [14].

The Newton–Raphson method was employed to solve the non-truncated averaged
equations (A1a) and (A1b) for the post-bifurcation branches. This process was repeated
for the following parameter ranges: N=2–10 with increments of one, m̂a =0·0013–0·013
with increments of 0·0001, G
 *u =0·03–0·08 with increments of 0·0001. In order to
determine as many solutions as possible, several starting points were randomly chosen in
the range ri =0–0·22 (the cusp level) and 8i =0–2p, for each i. The associated stability
of each solution was determined by numerically evaluating the eigenvalues of the
associated Jacobian matrix. Numerical and simulation studies of many Sp ×SN− p solutions
were carried out. It was found that in the post-bifurcation stage, for absorber amplitudes
below the cusp level, the only stable solution branch is the S1 ×SN−1 branch considered
in the analysis.

Equations (3a), (3b) and (4) were used to simulate directly the system dynamics, using
Gear’s BDF method [18]. It was found that by utilizing a wide range of initial
conditions and the ranges of system parameters described above, the system
dynamics always converged to the stable S1 ×SN−1 response in the post-bifurcation
parameter range.
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Figure 2. Post-bifurcation steady-state responses of the absorbers for N=4 (four absorbers), m̂a =0·0026 and
G
 u =0·048. ——, simulation; · · · · , truncated; - - - -, non-truncated; · · · · , imposed unison response.

Figure 2 shows a typical set of post-bifurcation absorber responses for N=4,
m̂a =0·0026 and G
 u =0·048. (Note that different values of m̂a show qualitatively the same
system dynamics as the value chosen here, although for higher damping levels the
bifurcation of the unison response occurs nearer the cusp point.) In Figure 2, the solid
lines represent the simulated response. The dotted lines are derived by estimating the
response by truncated equations (22), (33), (34) and transformations (17). The dashed lines
are obtained by assuming the stable S1 ×SN−1 solution (=S1 ×S3 here) and numerically
solving the non-truncated averaged equations (A1a) and (A1b) for the absorber responses.
The coarse dotted lines represent the simulated absorbers’ responses if they are locked into
a unison motion (that is, the absorber inertia is a single lumped mass). This shows that
the non-truncated equations are very accurate and that the truncated equations are quite
satisfactory. Note that the system response, as compared with the corresponding unison
motion, has N−1(=3) absorbers with a slight phase shift and little amplitude difference,
while one absorber undergoes a motion with drastically different amplitude and phase. It
is the localized response of this absorber that will limit the applied torque range. (In the
present analysis initial conditions will determine which absorber goes to the large
amplitude, as any one is capable of doing so. In practice, small symmetry breaking
discrepancies will favor localization in one of the absorbers.)

Figure 3 shows various estimates and simulations of the rotor acceleration for the same
case as Figure 2. The second order approximation is derived by the truncated equations
and the estimate given in equation (37), while the third order approximation is derived
by the truncated equations and the estimate given in equation (38). It is seen that the
second order approximation roughly represents the main harmonic component of the
simulated acceleration but offers a poor prediction for >yy'>ss . This is due to the fact that
in the post-bifurcation stage, the terms up to O(r2) in equation (13) saturate and the higher
order harmonics begin to dominate >yy'>ss . One remedy to this problem is to use the third
order approximation, from equation (38), to estimate >yy'>ss , which offers a significant
improvement over the second order results. As expected, the non-truncated solution is in
excellent agreement with the simulated acceleration in all regards.

Figure 4 shows >s>ss versus the applied torque level. The maximum amplitude, which
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Figure 3. Post-bifurcation steady-state responses of the rotor acceleration for N=4 (four absorbers),
m̂a =0·0026 and G
 u =0.048. ——, simulation; · · · · , the 2nd-order approximation; R, the 3rd-order
approximation; - - - -, non-truncated; · · · · , imposed unison response.

fixes the range of the applied torque, is set by the restriction in equation (6) and is marked
as ‘‘Cusp’’ in the figure.

From this figure, one observes that the truncated equations give a conservative
prediction of the feasible torque range while the non-truncated equations give a very
accurate estimate. Also, by comparing the unison and non-unison >s>ss’s, one can see that
the distribution of the total absorber mass into several smaller masses significantly
decreases the operating torque range. Figure 5 shows the percent reduction in this range
relative to the unison response for different numbers of absorbers. It is seen that as N
increases, the feasible range is dramatically decreased by the bifurcation.

Figure 4. >s>ss derived by different approximations versus the applied torque level. The system parameters
used are N=4 and m̂a =0·0026. ——, simulation; · · · · , truncated; - - - -, non-truncated; · · · · , imposed unison
response.
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Figure 5. The percent reduction in torque range, relative to the unison motion, versus the number of absorbers
for m̂a =0·0026. +, simulation; W, truncated; q, non-truncated.

Figure 6 shows >yy'>ss versus the applied torque level. In this figure, the second order
approximation completely saturates after the bifurcation, which is not observed in the
simulations. The third order results are much improved, and the non-truncated equations
again give a very accurate result. By comparing the >yy'>ss’s for the unison and non-unison
responses in the post-bifurcation range, one can see that the distribution of absorber mass
slightly improves absorber system performance by decreasing the >yy'>ss’s. Figure 7 shows
the ratios of >yy'>ss to that for the unison response for various numbers of absorbers with
G
 u =0·0555 and m̂a =0·0026. It is seen that the >yy'>ss’s obtained from simulations are well
approximated by the non-truncated equations. However, the second and third order results

Figure 6. >yy'>ss derived by different approximations versus the applied torque level, for system parameters
N=4 and m̂a =0·0026. ——, simulation; · · · · , the second order approximation; R, the third order
approximation; - - - -, non-truncated; · · · · , imposed unison response.
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Figure 7. The ratio of >yy'>ss to that for the unison response versus the number of absorbers for
G
 u =0·0555 and m̂a =0·0026. +, simulation; W, second order approximation; r, third order approximation;
q, non-trucated; w, imposed unison response.

significantly under and over estimate this ratio, respectively. Also, it is seen that the actual
ratio approaches unity as N increases.

Combining the results shown in Figures 5 and 7 indicates that one does not gain a
significant reduction in the level of torsional oscillations by distributing the absorber mass,
but the feasible torque range is drastically reduced.

7. CONCLUSIONS AND FUTURE WORK

This study considered the dynamic effects of using several masses to compose the
required inertia for a system of tuned absorbers. For usual sizing calculations, one
implicitly assumes that these masses move in a unison manner. In a previous study it was
determined that this motion can become dynamically unstable as the torque level is
increased [11]. In the present work the post-bifurcation dynamics are investigated. The
results were obtained and verified by employing three methods: (1) low order truncations
of the averaged equations, (2) numerically solving the non-truncated averaged equations,
and (3) simulations. The truncated equations offer reliable qualitative results in terms of
the dependence on system parameters, but are not very accurate in some respects. In
contrast, the non-truncated results, while requiring numerical solutions of the steady-state
equations, are very accurate in all respects.

It was found that the post-bifurcation dynamics are dominated by a stable S1 ×SN−1

steady-state solution branch. This is very reminiscent of mode localization, in that one
absorber undergoes a much larger amplitude of motion relative to the others (see reference
[19] for relevant work on non-linear localization). It was also found that this S1 ×SN−1

branch leads to the maximum >s>ss and it results in a mild saturation of >yy'>ss after
bifurcation.

Designers of absorber systems can refer to the information provided herein in order to
obtain refined estimates of system performance before testing. However, it is recognized
that other effects may have equal or greater influence on the overall system behavior. Of
particular importance is the level of absorber damping; while generally small in practice,
it is difficult to measure and may vary during operation (due to wear, temperature
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differences, etc.). It is interesting to note that when designing an absorber system, it is
desirable to keep this damping as small as possible in order to keep the absorber oscillating
in an out-of-phase fashion relative to the disturbing torque. This offers optimal torque
counteraction if the absorbers move in unison. However, for a multiple absorber system,
a lower damping level will cause the bifurcation to a non-unison response at a smaller level
of the disturbing torque level, causing a potentially dramatic decrease in the applicable
torque range.

As stated in the introduction, this investigation is only the first step in the study of unison
absorber motions. To be of any practical use, the results must be extended to include: other
absorber paths, including the widely-used, intentionally mis-tuned circular path; the effects
of multiple harmonics in the torque; rotor flexibility and the distribution of torque along
the axis of rotation; and mistuning, i.e., symmetry breaking, to name a few. Preliminary
simulations that include small mistunings among the absorbers indicate that the individual
absorber dynamics can be drastically altered by mistunings of the order of 1%. However,
it is also observed that the overall >s>ss’s and >yy'>ss’s are quite robust to such changes.
An investigation of these effects will bring the research squarely into the active realm of
mode localization (Happawana et al. [20]; Hodges [21]; Pierre and Dowell [22]; Vakakis
and Cetinkaya [19]).
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APPENDIX A: THE NON-TRUNCATED AVERAGED EQUATIONS

The non-truncated (in terms of amplitudes) averaged equations are given by

dri/du= o6−1
2m̃ari +(G	 u/n) cos 8iF1(ri)+

1
N

s
j$ i

[14n
3rir2

j sin (2aji)− nrjG1(ri , rj , aji)

− n(n2 + n4)r3
j H1(ri , rj , aji)]7+O(o2), (A1a)

d8i/du= o6(−G	 u/nri) sin 8iF2(ri)+
1
N

(1
4n

5r2
i − 1

2n)

+
1
N

s
j$ i $−1

4n
3r2

j cos (2aji)−
nrj

ri
G2(ri , rj , aji)− n(n2 + n4)

r3
j

ri
H2(ri , rj , aji)%7

+O(o2), 1E iEN. (A1b)

where
aji =8j −8i

F1(ri)=
1
2p g

2p

0

sin2 x[1− (n2 + n4)r2
i cos2 x]1/2 dx,

F2(ri)=
1
2p g

2p

0

cos2 x[1− (n2 + n4)r2
i cos2 x]1/2 dx,

G1(ri , rj , aji)=
1
2p g

2p

0

cos (x) sin (x− aji)[1− (n2 + n4)r2
j cos2 x]1/2
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× [1− (n2 + n4)r2
i cos2(x− aji)]1/2 dx,

G2(ri , rj , aji)=
1
2p g

2p

0

cos (x) cos (x− aji)[1− (n2 + n4)r2
j cos2 x]1/2

× [1− (n2 + n4)r2
i cos2(x− aji)]1/2 dx,

H1(ri , rj , aji)=
1
2p g

2p

0

cos (x) sin2 (x) sin (x− aji)$1− (n2 + n4)r2
i cos2 (x− aji)

1− (n2 + n4)r2
j cos2 x %

1/2

dx,

H2(ri , rj , aji)=
1
2p g

2p

0

cos (x) sin2 (x) cos (x− aji)$1− (n2 + n4)r2
i cos2 (x− aji)

1− (n2 + n4)r2
j cos2 x %

1/2

dx.

APPENDIX B: JUSTIFICATION OF c
 2c
 j , [2E i, jEN

In order to justify the assumption c
 2c
 j, [2E i, jEN, in the post-bifurcation
stage, the transformation with h1 capturing the dynamics in V and the remaining
hi(2E iEN) capturing the dynamics in W, where all hi ’s are orthogonal to each other,
is employed in place of transformation (16). Then, by also introducing the angular
transformation

hi = 7i cos (ti − nu) and h'i = n7i sin (ti − nu), 2E iEN, (B1)

and proceeding along the usual lines for the application of averaging, one arrives at the
following steady state conditions, in place of equations (23),

0=
−m̃a7� i

2
+ (G	 2

u7� i/4n) sin (2t� i), 0=G	 2
u7� i4n cos (2t� i)−

(N−1)n3

4
7� i0 s

N

j=2

7� 2j1. (B2a, B2b)

where 7� and t� are the approximate (averaged and truncated) versions of 7 and t. The above
equations give

t� i = t� j , (mod p)[i, j$N. (B3)

By the definitions of the ji ’s and the hi ’s, each ji with i$N is a linear combination of the
hi ’s with i$N. Hence, c
 i =c
 j , (mod p)[i, j$N. Now, choose an arbitrary i0$N. For all
j0$N with c
 i0 =c
 j0 + p, (mod 2p), replace (r� j0, c
 j0) by (−r� i0, c
 i0) to equivalently represent
the signal sj0, and then proceed with the analysis in section 4. One finds that the results
are the same as those obtained if c
 i =c
 j[i, j$N is assumed.

APPENDIX C: PROOF OF Trace [A+(N−2)B]Q 0 AND Det [A+(N−2)B]q 0 AS r� :0+

In section 4.3., it was claimed that the S1 ×SN−1 branch, with c
 2−3p/4, leads to
Trace [A+(N−2)B]Q 0 and Det [A+(N−2)B]q 0 as r� :0+ near the bifurcation
point. Through a non-trivial computation it can be shown that

Trace [A+(N−2)B]=−m̃a Q 0,

Det [A+(N−2)B]= 1
256{4n6(N−1)2N2r� 4 +7m̃2

a(N−2)2(n2 + n4)2r� 2r� 21

+16(N−2)m̃2
a(n2 + n4)r� r� 1 cos (c
 −c
 1)
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−8(N−2)2m̃2
a(n2 + n4)2r� 2r� 21 cos (2c
 −2c
 1)

−16(N−2)(N−1)Nm̃an3(n2 + n4)r� 3r� 1 sin (c
 −c
 1)}. (C1)

On the S1 ×SN−1 solution branch with c
 2 −3p/4,

cos (c
 −c
 1)2 1/z2, cos (2c
 −2c
 1)2 0, and sin (c
 −c
 1)2−1/z2. (C2)

Thus, Det [A+(N−2)B]q 0 on this branch as r� :0+ near the bifurcation point.

APPENDIX D: THE LOW ORDER APPROXIMATION OF yy'(u)

To obtain the expressions for yy'(u) in equation (37), a simplification is carried out in
two steps. First, it can be shown that

n2j1 +G	 u sin (nu)2 0 (D1)

by incorporating the approximate steady state solutions for r1 and c1 in equations (22).
Second, the remaining term is reduced based on the corresponding truncated steady state
equations (23). It can be shown that before the bifurcation the absorber motions undergo
unison motion, which yields

2n2

N
s
N

j=1

sjs'j =2n2j1j'1 = n3r� 21 sin (2c
 1 −2nu). (D2)

After the bifurcation, the transformations in equations (17) and (19) yield

2n2

N
s
N

j=1

sjs'j = n3$r� 21 sin (2c
 1 −2nu)− (N−1) s
j$ 1

r� 2j sin (2c
 j −2nu)

+ s
j,k$ 1 and j$ k

2r� jr� k sin (c
 j +c
 k −2nu)%. (D3)

Utilizing some trigonometric identities and the approximate solutions in equations (22):

R.S of (D3)=cos (2c
 i −2nu)6n3r� 21 sin (2c
 i)

+ n3 s
j$ 1,i

{2r� ir� j sin (c
 i −c
 j)− (N−1)r� 2j sin [2(c
 i −c
 j)]}

+ n3 s
j,k$ 1,i and j$ k

2r� jr� k sin (2c
 i −c
 j −c
 k)7
+sin (2c
 i −2nu)6n3r� 21 cos (2c
 i)+ (N−1)n3p� 3i
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+ n3 s
j$ 1,i

{2r� ir� j cos (c
 i −c
 j)− (N−1)r� 2j cos [2(c
 i −c
 j)]}

+ n3 s
j,k$ 1,i and j$ k

2r� jr� k cos (2c
 i −c
 j −c
 k)7, 2E iEN. (D4)

Incorporating the truncated averaged equations in equation (23) yields

R.S of (D4)=2m̃a cos (2c
 i −2nu), 2E iEN. (D5)

Based on the results in Appendix B, one finds

2m̂a cos (2c
 i −2nu)=2m̃a cos (2c
 −2nu), 2E iEN,

after the bifurcation.


